
SoftSlate Commerce
Guide for Developers

Copyright SoftSlate, LLC 2014.

rev. 6/2014

1

Table of Contents
1. Application Architecture.. 4
2. The Web Controller or Struts Layer... 5

Overview... 5
Components of the Web Controller (Struts) Layer..6

Detailed Example of Process Flow in the Web Controller (Struts) Layer:.......................................6
ActionForms... 6
ActionForm base superclasses..7
Actions..8
Tiles definitions.. 8
Struts configurations...9

Full Example: Customer-side Login Form and Processing...9
Customizing the Web Controller (Struts) Layer..12
Quiz for Web Controller (Struts) Layer...13

3. The Business Layer.. 14
Overview... 14
Creating Business Objects...14
Beans and Processors.. 15
Beans... 15
Processors..15

Example of a Processor.. 16
Customizing Business Objects.. 17
Quiz for Business Object Layer.. 18

4. The Data Access Layer...19
Overview... 19
Creating Data Objects... 20
Example of a DAO.. 21
Querying for Collections of Objects... 21

Named Queries (queries*.hbn.xml files).. 22
Customizing the Data Access Layer..23
Quiz for Data Access Layer...24

5. The Presentation Layer.. 25
Overview... 25
How Struts Routes Requests to JSP Templates... 25
Customizing the Presentation Layer..27

More Information on Customizing the Presentation Layer.. 28
Quiz for Making CSS Customizations.. 29
Quiz for Making JSP Customizations... 30

6. Full Example - Adding an Item to the Cart.. 31
7. Overview of How to Make Customizations...37
8. Extending SoftSlate Commerce's Business Objects.. 39

Using Built-In 'Extra' Fields..39
Storing Custom Data in Settings Tables..40
Adding Fields to the Database Tables... 41

Extending the Product Object by Adding a Field to sscProduct ..41
Adding a New Product Field to the Administrator Screens..43

2

3

1. Application Architecture
SoftSlate Commerce uses a Model, View, Controller (MVC) architecture to organize its classes and
files. The Model is further separated into two sections: classes devoted to interacting with the database
(DAOs), and classes devoted to processing business logic (Business Objects). The result is four distinct
layers to the application, illustrated by the following flow chart:

4

2. The Web Controller or Struts Layer

Overview
The Web Controller or Struts layer provides the mechanisms that control the routing of each web
request through the system (the "C" in MVC). In SoftSlate Commerce, for the customer and
administrator interfaces, the Web Controller or Struts layer consists of the following classes and files:

• The struts-config*.xml files under the WEB-INF/conf subdirectories (for the
customer interface).

• The struts-config*.xml files under the WEB-INF/conf/administrator
subdirectories (for the administrator interface).

• The classes in the com.softslate.commerce.customer package, most of which are
subclasses of org.apache.struts.action.ActionForm and
org.apache.struts.action.Action (for the customer interface).

• The classes in the com.softslate.commerce.administrator package, most of
which are subclasses of org.apache.struts.action.ActionForm and
org.apache.struts.action.Action (for the administrator interface).

In short, the role of this layer is to take in each browser request, to validate the browser request, to
invoke the classes in the Business layer responsible for processing the request, possibly to handle
certain processing itself (such as recording information in the browser session), and finally to route the
request to the appropriate Tiles definition in the Presentation layer.

Why separate the Web Controller into its own layer? Along with the Presentation layer, the Web
Controller or Struts layer encapsulates all the processes that relate to SoftSlate Commerce being a Web
application (as opposed to a GUI or some other application). For example, instances of
javax.servlet.http.HttpServletRequest or javax.servlet.http.HttpSession
are never referred to or used in the Business or Data Access layers. This separation makes it possible to
use the same back-end processing with different front-end systems, such as legacy applications.

Note
Because of its use of the Struts web application framework, a familiarity with
Struts is very useful when developing with SoftSlate Commerce. A great amount of
information is available online and in books about Struts. For more, visit the Struts
home page at http://struts.apache.org.

5

http://struts.apache.org/

Components of the Web Controller (Struts) Layer

Detailed Example of Process Flow in the Web Controller (Struts) Layer:

ActionForms

A bean class representing the submitted parameters of a given request. ActionForms might have a
validate() method where basic validation on the parameters is done.

ActionForm Example
/WEB-INF/layouts/default-html5/customer/login.jsp

...
<input type=”text” name=”userName”>
<input type=”text” name=”decryptedPassword”>
...

com.softslate.commerce.customer.customer.LoginForm

package com.softslate.commerce.customer.customer;
...
public class LoginForm extends BaseForm {

private String userName = null;
public String getUserName() {

6

return (this.userName);
}
public void setUserName(String userName) {

this.userName = userName;
}
private String decryptedPassword = null;
public String getDecryptedPassword() {

return (this.decryptedPassword);
}
public void setDecryptedPassword(String decryptedPassword) {

this.decryptedPassword = decryptedPassword;
}
…
public ActionErrors validate(ActionMapping mapping, HttpServletRequest

request) {
if (getUserName() == null || getUserName().length() == 0) {

String message = getMessage("customer", "customer.userName",
null);

getErrors().add(ActionMessages.GLOBAL_MESSAGE, new
ActionMessage("errors.required", message));

}
…
return getErrors();

}
}

ActionForm base superclasses

All Action Forms in SoftSlate subclass either BaseForm or BaseDynaForm:

com.softslate.commerce.customer.core.BaseForm
com.softslate.commerce.customer.core.BaseDynaForm

These classes serve the same functions, and BaseDynaForm is essentially deprecated from our point of
view (it uses a Struts feature where properties can be defined in the XML configuration. We find it's
best to define the properties in the form class itself.)

These classes provide the following properties, which are populated by the initializeProperties()
method in the base superclasses:

• request: The HttpServletRequest object for the current request.
• messages: Struts uses the ActionMessages class to store messages that should be displayed to

the customer. This object stores success messages or informational messages that end up
showing up on the screen here (admin side example):

• errors: Another ActionMessages object that stores error messages corresponding to the
ActionForm:

• settings: A copy of the global application settings. (Eg.
settings.getValue(“databaseObjectsVersion”) gets you the current version of SoftSlate).

• user: Representing the current user of the application (eg.

7

getUser().getAdministrator().getUserName() gets you the current logged in administrator's user
name. getUser().getCustomer().getUserName() gets the current logged in customer's user
name.)

• businessObjectFactory: Allowing Struts actions to create Business Objects for back-
end processing.

For ActionForms in the Administrator application there is BaseAdministratorForm, which subclasses
BaseForm and provides an additional administrator property representing the current logged in
Administrator for the request.

Actions

A Struts Action class is used to process a given request. The Action class for a given request is
specified in the Struts configuration file with the “path” attribute of each action mapping. Struts sends a
populated ActionForm instance into the Action class's execute() method, where the Action class can
retrieve everything it needs via its properties, including a BusinessObjectFactory, Settings, the request
parameters, etc. This class typically calls a BusinessProcessor to process the backend of the request.

com.softslate.commerce.customer.customer.LoginAction

package com.softslate.commerce.customer.customer;
...
public class LoginAction extends BaseAction {

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception {

log.info("Starting action.");
LoginForm baseForm = (LoginForm) form;
CustomerProcessor customerProcessor = baseForm

.getBusinessObjectFactory().createObject(
 CustomerProcessor.class);

Map result = customerProcessor.processLogin(parameters);
…

}
}

}

Tiles definitions

Tiles definitions are XML configurations that tell the system which JSPs to use for the output of each
request. It is possible to nest Tiles definitions.

/WEB-INF/conf/customer/tiles-defs-customer.xml

 <definition name="customer.accountAddresses" extends="core.baseLayout">
 <put name="pageTitleKey" value="page.accountAddresses"/>
 <put name="subMenu" value="customer.accountMenu" />
 <put name="body" value="customer.accountAddressesLayout" />
 </definition>
...

8

 <definition name="customer.accountAddressesLayout" path="/WEB-
INF/layouts/default/customer/accountAddressesLayout.jsp">

 <put name="billingFormGuts" value="/WEB-
INF/layouts/default/order/billingFormGuts.jsp"/>
 <put name="deliveryFormGuts" value="/WEB-
INF/layouts/default/order/deliveryFormGuts.jsp"/>

</definition>

Struts configurations

XML files that define the flow of each request, including which ActionForms correspond to which
Actions, and which Tiles definitions are used for the output. If you want to know what happens with X
request, start with the Struts configuration files. Find the action mapping for the request (the mapping
whose path attribute corresponds to the URL minus the .do extension) and follow the processing from
there.

/WEB-INF/conf/customer/struts-config-customer.xml

<form-bean
name="loginForm"
type="com.softslate.commerce.customer.customer.LoginForm">

</form-bean>
...
<action

path="/Login"
 type="com.softslate.commerce.customer.customer.LoginAction"

name="loginForm"
validate="true"
scope="request"
input="/AccountLogin.do">
<forward name="success" path="/Account.do"/>
<forward name="failure" path="/AccountLogin.do"/>

</action>

Full Example: Customer-side Login Form and Processing
/WEB-INF/layouts/default/customer/login.jsp

<form action=”Login.do”>
<input type=”text” name=”userName”>
<input type=”text” name=”decryptedPassword”>

</form>

/WEB-INF/conf/customer/struts-config-customer.xml

<form-bean
name="loginForm"
type="com.softslate.commerce.customer.customer.LoginForm">

</form-bean>
...
<action

9

path="/Login"
 type="com.softslate.commerce.customer.customer.LoginAction"

name="loginForm"
validate="true"
scope="request"
input="/AccountLogin.do">
<forward name="success" path="/Account.do"/>
<forward name="failure" path="/AccountLogin.do"/>

</action>
...
<action

path="/Account"
 type="com.softslate.commerce.customer.customer.AccountAction">

<forward name="catalogMode" path="/Welcome.do"/>
<forward name="accountLogin" path="/AccountLogin.do"/>
<forward name="accountHome" path="/AccountAddresses.do"/>

</action>
…
<action

path="/AccountAddresses"
type="com.softslate.commerce.customer.customer.
AccountAddressesAction"
name="addressForm"
validate="false"
scope="request">
<forward name="success" path="customer.accountAddresses"/>
<forward name="notLoggedIn" path="/AccountLogin.do"/>

</action>

com.softslate.commerce.customer.customer.LoginForm

package com.softslate.commerce.customer.customer;
...
public class LoginForm extends BaseForm {

…
public ActionErrors validate(ActionMapping mapping, HttpServletRequest

request) {
if (getUserName() == null || getUserName().length() == 0) {

String message = getMessage("customer", "customer.userName",
null);

getErrors().add(ActionMessages.GLOBAL_MESSAGE, new
ActionMessage("errors.required", message));

}
…
return getErrors();

}
}

com.softslate.commerce.customer.customer.LoginAction

10

package com.softslate.commerce.customer.customer;
...
public class LoginAction extends BaseAction {

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception {
log.info("Starting action.");
LoginForm baseForm = (LoginForm) form;
CustomerProcessor customerProcessor = baseForm

.getBusinessObjectFactory().createObject(CustomerProcessor.class)
;

11

Map result = customerProcessor.processLogin(parameters);
…

}
}

Customizing the Web Controller (Struts) Layer
1. By convention, you should name ActionForm classes *Form.java (LoginForm.java).

2. By convention, you should name Action classes *Action.java (LoginAction.java).

3. There is a particular type of Action class that does not process a form, but rather prepares a
form to be displayed to the user (the form's fields might need to be prepopulated for the user
from his session, or from the database). By convention, you should name these form-
preparation Action classes *FormAction.java. Eg, CartItemEditFormAction.java.

4. All new Struts configurations should go in /WEB-INF/conf/core/struts-config-custom.xml for
the customer interface or /WEB-INF/conf/administrator/core/struts-config-custom.xml for the
administrator interface. (These files are not overwritten during upgrades.)

5. All new Tiles definitions should go in /WEB-INF/conf/core/tiles-defs-custom.xml for the
customer interface or /WEB-INF/conf/administrator/core/tiles-defs-custom.xml for the
administrator interface. (Again, these files are not overwritten during upgrades.)

6. Note that if the same mapping or tiles definition exists in one of the custom configuration files,
as another Struts configuration file, the custom definitions win. When searching for a given
mapping or tiles definition, start with the custom files to see if they have been overwritten there.

7. By convention, all new Struts ActionForm Classes and Action class should go in a custom Java
package, eg, com.yourdomainname.commerce.customer. The package name should end in
“customer” for the customer interface and “administrator” for the administrator interface (eg.,
com.yourdomainname.commerce.administrator).

8. All new JSPs templates should go in /WEB-INF/layouts/custom. These are not overwritten by
upgrades, where as the ones in /WEB-INF/layouts/default* are.

12

Quiz for Web Controller (Struts) Layer
1. Where are SoftSlate's Struts configuration files found in the application, for the *customer*

interface? And where are the Struts config files for the *admin* interface found?

2. When customizing SoftSlate Commerce, what file should new or altered Struts configurations
be placed in? Answer both for the customer interface, and for the admin interface.

3. What file should custom or altered Tiles definitions be placed in? Answer in reference to both
the customer interface and the admin interface.

4. If a Struts action mapping includes a "name" attribute and specifies validate="true", what
method of what class is invoked to validate the request's input parameters?

5. If the validation fails, where is the request forwarded to?

6. If the validation succeeds, where is the request forwarded to?

7. In the Struts forms and actions, we sometimes add "errors" or "messages" to a request object.
What files store the text of these messages and errors? Where are they found on the file system?

8. In the Struts forms and actions, we sometimes add "errors" or "messages" to a request object.
What files store the text of these messages and errors? Where are they found on the file system?

9. What file(s) would you use in order to customize one of the existing application messages or
errors, or add new ones?

13

3. The Business Layer

Overview
The Business layer is responsible for processing the application's business logic and representing the
application's state in the form of Java beans. For example, in the case of a request to add an item to the
user's cart, the Business layer will initialize the user's cart if it hasn't been already, create new objects
representing the items in the cart, and then communicate with the Data Access layer to store a
representation of the cart in the database.

The Business layer consists of the following classes:

• The classes in the com.softslate.commerce.businessobjects package, which is
broken down into several units loosely organized by functional area, including "product",
"customer", "order", "core", etc.

Creating Business Objects
Business objects are created by Struts Actions, or subclasses of CommandLineSupport for comman-
line driven jobs, or any other Java process that needs them. They are ignorant of being used within a
Web application so can be called from any Java process (no references to ServletContext for example).

When creating a Business Objects the typical way is to call BusinessObjectFactory.createObject (there
is also support for Google Guice injection but that is not in widespread use):

ProductProcessor productProcessor = baseForm.getBusinessObjectFactory()
.createObject(ProductProcessor.class);

…
category = productProcessor.getCategoryFromCode(category,

shouldProductsBeLoadedFromDB);

If the argument passed into createObject is a concrete class, BusinessObjectFactory.createObject
simply instantiates it. If the argument is an interface, as it will be in all cases in the core application, it
first looks up the implementing class corresponding to the argument from /WEB-
INF/classes/appComponents.properties and /WEB-INF/classes/appComponents-custom.properties.

Each Business Object in the core application has a corresponding Java interface, which the rest of the
application uses to manipulate it. For example, the processor used to handle various requests related to
a user's cart is named
com.softslate.commerce.businessobjects.order.BasicCartProcessor .
However, throughout the rest of the application, instances of BasicCartProcessor are always
referred to through its corresponding interface,
com.softslate.commerce.businessobjects.order.CartProcessor . This practice
provides a huge benefit in terms of customizing SoftSlate Commerce: through a simple configuration
change, you can change the concrete class the application uses to something else. As long as it
implements the original interface, the rest of the application can use it just as it did the original class. In
your new custom class, however, you now have the ability to override any and every method to

14

implement your own custom functionality. We'll explore the nuts and bolts of doing this in more detail
later. The exact same feature is available for all the classes in the Data Access layer as well.

Beans and Processors
There are two kinds of Business Objects, which we call “Beans” and “Processors”. Processors (ie.
those classes named *Processor) contain business processing logic, whereas Beans (ie. those
classes named *Bean) store application state.

Beans
Beans are subclasses of BaseBusinessObject and follow the Java beans pattern and we use them to
store state. They are simply composed of properties, each with a getter and setting. There may be other
small, supporting methods but they will have very minimal functionality. Eg. ProductBean holds the
state of a given product record in the database.

com.softslate.commerce.businessobjects.product.ProductBean

public class ProductBean extends BaseBusinessObject implements Product,
Serializable {

private static final long serialVersionUID = 6016213050418840957L;
static Log log = LogFactory.getLog(ProductBean.class);
private int productID = 0;
private String code = null;
private String seoCode = null;
private String name = null;
private String keywords = null;
private String shortDescription = null;
private String description = null;
private boolean isActive = true;
…

}

Processors
Processors are subclasses of BaseBusinessProcessor. These objects are where the functionality lives.
They are organized loosely by functional area. Eg. BasicProductProcessor has methods relating to
working with products and the product catalog. BasicOrderProcessor has methods working with orders,
and so on. Other Processors are more focused on a particular functional area, such as
BasicCartDiscountProcessor, which has methods used to apply discounts to a user's order.

After instantiating a Processor, createObject initializes the following properties of the object. This
allows each Processor to carry with it all tools it needs to perform whatever function it needs to
perform.

• user: representing the current user of the application (eg.
getUser().getAdministrator().getUserName() gets you the current logged in administrator's
user name.

• settings: representing the global application settings (eg.

15

settings.getValue(“databaseObjectsVersion”) gets you the current version of SoftSlate).
• daoFactory: allowing the object to create DAOs for database interaction. The BO can

also do some direct database interaction via this property, which is against convention but
sometimes useful.

• businessObjectFactory: allows the BO to create other BOs.
• businessObjectUtils: date formatting and other utility functions.
• appSettings: represents /WEB-INF/classes/appSettings.properties
• appComponents: /WEB-INF/classes/appComponents.properties and /WEB-

INF/classes/appComponents-custom.properties
• injector: the Google Guice injector used for injecting other BOs (not in widespread use)
• eventBus: allowing the BO to post events that other registered triggers can listen and

react to.

Example of a Processor
com.softslate.commerce.businessobjects.order.BasicCartDiscountProcessor

public class BasicCartDiscountProcessor extends BaseBusinessProcessor
implements CartDiscountProcessor {

…
public Map processDiscounts(Collection newOrderItems) throws Exception {

if (log.isDebugEnabled())
log.debug("Processing discounts.");

String applyDiscounts = (String) getSettings().getValue(
"applyDiscounts");

if (getUser().getOrder() != null
&& getUser().getOrder().firstDelivery() != null
&& applyDiscounts != null && applyDiscounts.equals("1")) {

…
// Create a DAO to communicate with the database
OrderDAO orderDAO = (OrderDAO)

getDaoFactory().createDAO("orderDAOImplementer");
orderDAO.setOrder(getUser().getOrder());
orderDAO.updateOrder(true);

…
}

16

Customizing Business Objects

17

Quiz for Business Object Layer
1. What SoftSlate Commerce configuration file stores the names of the concrete classes that

implement all of the various interfaces in the application, for both business objects and DAOs?

2. When customizing SoftSlate Commerce, what file should be used to change the concrete class
used by the application to implement an interface, where you would put the reference to the
custom implementing business object or DAO you created?

3. What SoftSlate Commerce class is responsible for instantiating and initializing business
objects?

4. In SoftSlate Commerce, no business object or DAO will ever refer to a Struts class, or to
HttpServletRequest, or any other element of the Web layer -- in order to maintain separation of
concerns, and to allow non-web processes such as command line jobs to use them. In lieu of
HttpSession, what business object in SoftSlate Commerce is used to store information about the
current user's session?

5. In the business object layer, how would you test that the current user is a logged in customer?
How would you test that he is a logged in administrator?

6. Some business objects are named like "ProductBean" and some are named like
"BasicProductProcessor". Generally speaking, what's the difference between a SoftSlate
Commerce bean and a processor?

7. Every BusinessProcessor has a property named settings, which an instance of SettingsBean.
What does this object store, and what database table does it correspond to?

18

4. The Data Access Layer

Overview
The Data Access layer is responsible for writing and retrieving data to and from the database, and
returning the results to the Business layer. For example, in the case of a request to add an item to the
user's cart, the Business layer will invoke classes in the Data Access layer, which will do the work of
inserting and updating the various tables in the database that store a representation of the user's cart.
Starting with version 2.x, SoftSlate Commerce employs the Hibernate persistance framework to handle
all of its database interaction.

The Data Access layer consists of the following classes and files:

• The classes in the com.softslate.commerce.daos package, which is broken down into
several units loosely organized by functional area, including "product", "customer", "order",
"core", etc.

• The sql*.hbm.xml files under the WEB-INF/classes/resources subdirectories,
which contain the HQL (Hibernate Query Language) queries used by the application.

• The *.hbm.xml files in the com.softslate.commerce.businessobjects package,
which contain the Hibernate mappings that map the business object Java beans to the database
tables.

The majority of Beans in SoftSlate correspond to a single table in the database. SoftSlate employs
Hibernate to map these beans to records in the database, and these mappings are expressed by the
various *.hbm.xml configuration files. For example, take the PaymentBean:

com.softslate.commerce.businessobjects.payment.PaymentBean

public class PaymentBean extends BaseBusinessObject implements Payment,
Serializable {

private static final long serialVersionUID = 6172928043433996107L;
private int paymentID = 0;
private String status = null;
private int orderID = 0;
…

}

This Bean has a corresponding Hibernate mapping file, PaymentBean.hbm.xml.

/WEB-INF/src/com/softslate/commerce/businessobjects/payment/PaymentBean.hbm.xml

<hibernate-mapping>
<class

name="com.softslate.commerce.businessobjects.payment.Payment"
table="Payment"
lazy="false">
<id name="paymentID">

<generator class="native"/>
</id>
<discriminator/>

19

<property name="paymentID" insert="false" update="false"/>
<property name="orderID" insert="false" update="false"/>
<property name="status" length="100" index="IDX_sscP_status"/>

…
</hibernate-mapping>

And the Bean corresponds to the sscPayment database table:
mysql> describe sscPayment;
+-------------------------+---------------+------+-----+
| Field | Type | Null | Key |
+-------------------------+---------------+------+-----+
paymentID	int(11)	NO	PRI
status	varchar(100)	YES	
orderID	int(11)	NO	MUL
…

Data Objects in SoftSlate essentially use Hibernate to convert Beans into database records and vice-
versa. This is the essence of Object-Relation mapping (ORM).

Creating Data Objects
Data Objects by convention are created by BusinessObjects. As with Business objects, it is possible to
inject them using Google Guice but this is not in widespread use. Typcially DAOs are created using the
DaoFactory property of a Business Object (getDaoFactory()).

From BasicCartDiscountProcessor

OrderDAO orderDAO = getDaoFactory().createDAO(OrderDAO.class);
orderDAO.setOrder(getUser().getOrder());
orderDAO.updateOrder(true);

DaoFactory.createDAO works much the same way as BusinessObjectFactory.createObject. If the
argument passed into createDAO is a concrete class, it simply instantiates it. If the argument is an
interface, it first looks up the implementing class corresponding to the argument from /WEB-
INF/classes/appComponents.properties and /WEB-INF/classes/appComponents-custom.properties. In
the above example, createDAO would see that OrderDAO is an interface. It would look inside
appComponents-custom.properties first to see if an implementer is defined there. If none has been
define in the custom configuration it will look at appComponents.properties, where it will find this:

From /WEB-INF/classes/appComponents.properties

orderDAOImplementer = com.softslate.commerce.daos.order.OrderDAOHibernate

This tells createDAO to instantiate an instance of OrderDAOHibernate.

Next, createDAO will initialize the new DAO with various properties so it can do everything it needs to
do to communicate with the database. All DAOs subclass BaseDAO, where these properties are
defined:

• Settings: representing the global application settings (eg.

20

settings.getValue(“databaseObjectsVersion”) gets you the current version of SoftSlate).
• DaoFactory: allowing the object to create other DAOs. In addition, DAO holds the

Hibernate SessionFactory which is used to initiate a Hibernate session, which is what is
used to run queries.

• appSettings: represents /WEB-INF/classes/appSettings.properties
• appComponents: /WEB-INF/classes/appComponents.properties and /WEB-

INF/classes/appComponents-custom.properties
• Injector: the Google Guice injector used for injecting other DAOs (not in widespread use)

Example of a DAO
com.softslate.commerce.daos.order.OrderDAOHibernate

public class OrderDAOHibernate extends BaseDAO implements OrderDAO {
...

public Order loadOrderFromID(int orderID) throws Exception {
Session session = getDaoFactory().startSession();
try {

Order record = (Order) session.get(Order.class, new Integer(
orderID));

return record;
} catch (HibernateException he) {

if (log.isErrorEnabled())
log.error("Hibernate error: " + he.toString());

throw new DataAccessException(he);
}

}
…

public void updateOrder(boolean commit) throws Exception {
Session session = getDaoFactory().startSession();
try {

getOrder().setLastModified(formatDateTime(new java.util.Date()));
session.update(getOrder());
if (commit) {

getDaoFactory().commitTransaction();
}

} catch (HibernateException he) {
if (log.isErrorEnabled())

log.error("Hibernate error: " + he.toString());
throw new DataAccessException(he);

}
return;

}
…
}

21

Querying for Collections of Objects
Many DAOs are like the above example and simply deal with selecting, updating, inserting and
deleting a single record in the database. These types of DAOs are named *DAOHibernate.java, etc.
OrderDAOHibernate, ProductDAOHibernate, CustomerDAOHibernate, etc.

The DAOs with the term “Gateway” in their name, eg OrderGatewayDAOHibernate and
ProductGatewayDAOHibernate.java are used to process multiple records at once. For example, when
querying all of the products in the system:

com.softslate.commerce.daos.product.ProductGatewayDAOHibernate

public class ProductGatewayDAOHibernate extends BaseAdminGatewayDAOHibernate
implements ProductGatewayDAO {

…
public Collection loadAllProductsSortedByName() throws Exception {

Collection results = null;
Session session = getDaoFactory().startSession();
try {

Query q = getNamedQuery(session,"product.selectAllSortedByName");
results = new LinkedHashSet(q.list());

} catch (HibernateException he) {
if (log.isErrorEnabled())

log.error("Hibernate error: " + he.toString());
}
return results;

}
…

}

Named Queries (queries*.hbn.xml files)

The above example uses a “named query,” which is simply a query that is defined in an XML file so it
can be maintained separately from Java code. In SoftSlate, the named queries are stored in files named
queries.hbm.xml (for queries distributed with the core application) and queries-custom.hbm.xml (for
custom queries). Hibernate queries can be written using native SQL but all the queries distributed with
the core application are written using HQL, the Hibernate Query Language, which is database
independent. Much more info in the Hibernate documentation:
http://docs.jboss.org/hibernate/orm/3.2/reference/en/html/objectstate.html#objectstate-querying

/WEB-INF/src/resources/product/queries.hbm.xml

<query name="productList.selectAllActive"><![CDATA[
SELECT p FROM Product p
LEFT JOIN FETCH p.primaryCategory c
WHERE

p.isActive = '1'
AND (c.isActive = '1'

OR c.isActive IS NULL)
ORDER BY c.categoryOrder, p.productOrder

22

http://docs.jboss.org/hibernate/orm/3.2/reference/en/html/objectstate.html#objectstate-querying

]]></query>

This query returns a Collection of Objects when the query.list() method is run for it.

Customizing the Data Access Layer
Customizing a Data Access Object is done in exactly the same way as customizing a Business Object.
Please refer the to above sections for an example. The new or overriding subclass should be registered
in /WEB-INF/classes/appComponents-custom.properties, as with custom Business Objects.

If you need to customize one of the core SoftSlate named queries, append “-custom” to the name of the
query and place the custom query in the correponding queries-custom.properties file. Eg, to customize
the above query, name your query like this:

/WEB-INF/src/resources/product/queries-custom.hbm.xml

<query name="productList.selectAllActive-custom"><![CDATA[
…
</query>

If named in this manner, SoftSlate will use the custom query instead of the core query.

23

Quiz for Data Access Layer

1. The naming convention for DAOs in SoftSlate Commerce includes classes named like
"ProductDAOHibernate" and other classes named like "ProductGatewayDAOHibernate". What
is the general difference between these two DAOs (what does the "Gateway" term signify)?

2. What SoftSlate Commerce object stores the Hibernate SessionFactory, and is used by each
individual DAO when it needs to make use of a Hibernate Session?

3. SoftSlate Commerce follows a model of a one Hibernate Session per HTTP request. At what
point is the Hibernate Session first created, and what object(s) are responsible for creating it?

4. What object is responsible for closing the Hibernate Session corresponding to each request?
Where does that happen in the application?

5. What files store the HQL statements used by the DAO objects? Where are they found in the
application's directory structure? How would one override one of the HQL statements with a
custom HQL query?

24

5. The Presentation Layer

Overview
After the Web Controller layer routes the request to the Business layer and retrieves the results of the
processing, it then forwards the request to the Presentation layer, which is responsible for generating
the HTML sent to the user's browser. The Presentation layer is composed of the following files:

• The tiles-defs*.xml files under the WEB-INF/conf subdirectories (for the customer
interface).

• The tiles-defs*.xml files under the WEB-INF/conf/administrator subdirectories
(for the administrator interface).

• The JSP templates in the WEB-INF/layouts directory (for the customer interface).
• The JSP templates in the WEB-INF/templates/administrator directory (for the

administrator interface).
• The application.properties*.xml files under the WEB-
INF/classes/resources subdirectories, which contain various text messages used in the
Presentation layer.

• The css/style.css and css/style-custom.css files, which contain the CSS
stylesheet definitions the application uses.

• The images directory, which contains some images referred to in the application's HTML
output.

How Struts Routes Requests to JSP Templates
In the case of a request to view a product detail page, the Web Controller layer will place the requested
product information retrieved from the database in the request scope, (in the form of an instance of
com.softslate.commerce.businessobjects.product.Product) . It will then forward
the request to the Presentation layer, to output the HTML containing the information to the user's
browser.

com.softslate.commerce.customer.product.ProductAction

public class ProductAction extends BaseAction {
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception {

...
ProductProcessor productProcessor = baseForm

.getBusinessObjectFactory().createObject(
ProductProcessor.class);

Product product = baseForm.getBusinessObjectFactory()
.createObject(Product.class);

...
product = productProcessor.getProductFromCode(product);
...
request.setAttribute("product", product);

25

...
return mapping.findForward("success");

}
}

The ActionForward returned by the Struts action is looked up in the Struts configuration to determine
how to forward the request to the Presentation Layer:

/WEB-INF/conf/product/struts-config-product.xml

 <action
 path="/Product"
 type="com.softslate.commerce.customer.product.ProductAction"
 name="productForm"
 scope="request"
 validate="true"
 input="core.error">

 <forward name="success" path="product.product"/>
 <forward name="successFullLayout"

path="product.productFullLayout"/>
 <forward name="failure" path="core.error"/>
</action>

SoftSlate Commerce employs the Tiles framework, which is distributed as part of Struts, to organize
the JSP templates responsible for presentation. When the Web Controller layer executes a forward to
the Presentation layer, it specifies one of the Tiles definitions defined in the tiles-defs*.xml files
under the WEB-INF/conf subdirectories. The role of each Tiles definition is to describe which JSP
templates should be used to output the response.

Note
There is much more information about Tiles available in books and online. Refer
to the Struts Web site for more details.

In the case of a request to view a product detail page, the Web Controller layer forwards to the
product.product Tiles definition, which is defined in the WEB-INF/conf/product/tiles-
defs-product.xml file.

 <definition name="product.product" extends="core.baseLeftLayout">
 <put name="pageTitleKey" value="page.product"/>
 <put name="subMenu" value="product.breadcrumbs" />
 <put name="body" value="product.productLayout" />
 </definition>

...
 <definition name="product.productLayout" path="/WEB-
INF/layouts/default/product/product.jsp">
 <put name="inventoryDiscountSettings" value="/WEB-
INF/layouts/default/product/inventoryDiscountSettings.jsp" />
 <put name="inventory" value="/WEB-

26

http://struts.apache.org/userGuide/dev_tiles.html

INF/layouts/default/product/inventory.jsp" />
 <put name="discounts" value="/WEB-
INF/layouts/default/product/discounts.jsp" />
 <put name="promotions" value="/WEB-
INF/layouts/default/product/promotions.jsp" />
 <put name="additionalImages" value="/WEB-
INF/layouts/default/product/additionalImages.jsp" />
 <put name="productReviews" value="/WEB-
INF/layouts/default/product/productReviews.jsp" />
 <put name="attributesAndOptions" value="product.attributesAndOptions" />
 <put name="attributesAndOptionsMatrix" value="/WEB-
INF/layouts/default/product/attributesAndOptionsMatrix.jsp" />
 <put name="relatedProductList" value="product.productListProductLayout" />
 <put name="relatedProductListRows"
value="product.productListProductLayoutRows" />
 <put name="wishListProductAddForm" value="/WEB-
INF/layouts/default/product/wishListProductAddForm.jsp" />
 </definition>

That file tells Tiles to use the WEB-INF/layouts/default/product/product.jsp as the
main JSP template to display the body of the product page.

Note
SoftSlate Commerce extends the Tiles framework to first look inside the custom
directory each time a given template is called for, before using the template found
in the default directory. This is how a definition that calls for /WEB-
INF/layouts/default/core/welcome.jsp will include /WEB-
INF/layouts/custom/core/welcome.jsp instead, if it exists.

Customizing the Presentation Layer
The JSP templates that come with the application are all located in the /WEB-
INF/layouts/default-html5 directory (for versions between 2.3 and 3.3.2 it's the /WEB-
INF/layouts/default-xhtml directory and for versions prior to 2.3, it's the /WEB-
INF/layouts/default directory). Inside there, they are organized into subdirectories representing
the major functional areas of your store: core , product, order, customer, and payment .

Custom templates that you create will go in the /WEB-INF/layouts/custom directory, which
contains the same five subdirectories. If a JSP template exists in the custom directory, the store will
automatically detect and use it in place of the corresponding template under the default directory.
This system allows you to create custom templates for just those areas of the store you need to modify,
while other areas can be left untouched so that they use the default templates.

It's important not to modify the templates in the /WEB-INF/layouts/default-html5 directory.
These files may be overridden when you install a future upgrade of SoftSlate Commerce. Instead,
please place a copy of the template you wish to change into the corresponding subdirectory under
/WEB-INF/layouts/custom. The store will automatically detect the new file and begin using it

27

immediately. You can then feel free to make whatever changes you wish to the copied file.

Copying a template from the default-html5 directory to the custom directory

More Information on Customizing the Presentation Layer

For more information about customizing the presentation layer, visit the Guide for Designers:
http://www.softslate.com/documentation/html/guideForDesigners.html

In addition this video takes you step-by-step making a customization to the CSS and JSPs:
http://screencast.com/t/AFVLzOD9JBv

28

http://screencast.com/t/AFVLzOD9JBv
http://www.softslate.com/documentation/html/guideForDesigners.html

Quiz for Making CSS Customizations
NOTE: Be sure to watch the video first: http://screencast.com/t/AFVLzOD9JBv

1. SoftSlate Commerce has a notion of a "CSS Theme". Where in the SoftSlate Commerce project
are the files/directories corresponding to each CSS Theme?

2. What screen of the Administrator is used to select the CSS theme in effect for the store?

3. Regardless of the CSS Theme in effect, what CSS file in project is included before the CSS
stylesheet corresponding to the CSS Theme is included?

4. Regardless of the CSS Theme in effect for the store, what CSS file is included *after* the
stylesheet for theme's stylesheet, allowing you to override all the core styles and theme's styles?

5. What screen of the Administrator controls dynamic CSS styles for the store? And what JSP
template is responsible for enacting the styles?

6. Describe how you would go about enforcing a fixed width of 1000 pixels for all screens in the
store. What file(s) would you touch?

29

http://screencast.com/t/AFVLzOD9JBv

Quiz for Making JSP Customizations
NOTE: Be sure to watch the video first: http://screencast.com/t/AFVLzOD9JBv

1. Where in the SoftSlate Commerce project are all the JSP templates for the customer interface
located? Where are the templates for the Administrator interface located?

2. SoftSlate Commerce has a "default" directory and a "default-xhtml" directory. What's the
difference between the two? Which directory has the default customer-side templates for a fresh
installation of SoftSlate Commerce?

3. What is the basic process for applying a customization to one of the JSP templates?
Specifically, what would you do to apply a customization to the customer-side header.jsp file?

4. What JSP templates control the appearance of the following? (a) The customer-side Cart page.
(b) The customer-side Thank You page. (c) The customer-side Order Details page under My
Account -> Order History. (d) The HTML section of the customer-side order confirmation
email. (e) The admin-side Order Overview screen.

5. Some SoftSlate Commerce screens on the customer side use "leftLayout.jsp" and others use
"layout.jsp". Name three customer-side screens that use leftLayout.jsp. Name three customer-
side screens that use layout.jsp. What is the essential difference between these two JSPs?

6. What JSP template would you customize in order to add an include for Javascript file inside the
<head> tag of all Administrator screens?

7. What are the mechanics behind SoftSlate using the JSPs in the "custom" directory over the ones
in the default directories? What tag or tags do it?

30

http://screencast.com/t/AFVLzOD9JBv

6. Full Example - Adding an Item to the Cart
There's nothing better than a detailed example to provide some insight into the concepts presented
above. In the following example, we'll go step-by-step through a typical request sent to the SoftSlate
Commerce application, touching on each of the configuration files, Java classes, and JSP templates
used to process it. The example we'll use is a request from a user to add an item to the cart.

1. The user submits the "Add to Cart" form from a product detail page. As you can see, the form
contains an input box for the quantity, as well as any number of form elements describing
customer-selected "attributes" for the product (in this case, "Frame" and "Size" are the two
attributes assigned to this product).

The Add to Cart form.

2. The Web Controller or Struts layer identifies the action mapping corresponding to the URL of
the request. In this case, the URL is /CartAdd.do . The Struts ActionServlet looks up
the corresponding action mapping and finds it in the WEB-INF/conf/order/struts-
config-order.xml configuration file:

<action
 path="/CartAdd"
 type="com.softslate.commerce.customer.order.CartAddAction"

31

 name="cartAddForm"
 validate="true"
 scope="request"
 input="/Product.do">
 <forward name="failure" path="/Product.do"/>
 <forward name="success" path="cart.full"/>
</action>

3. The Web Controller or Struts layer identifies and invokes the Struts action form corresponding
to the request. The above action mapping refers to the "cartAddForm" form bean, which is
defined at the top of the same configuration file, WEB-INF/conf/order/struts-
config-order.xml :

<form-bean
 name="cartAddForm"
 type="com.softslate.commerce.customer.order.CartAddForm">
</form-bean>

Because the action mapping's validate attribute is set to true, Struts knows that the request
must be validated. In Struts, this means that the validate method of the action form
com.softslate.commerce.customer.order.CartAddForm must be invoked.

4. The validate method of
com.softslate.commerce.customer.order.CartAddForm validates the
request's parameters. In this case, CartAddForm makes sure a postitive integer is present for
the quantity to be added, and that if any of the product's attributes are required, they are present
in the request.

If the result of the validation is one or more errors, the request gets forwarded to the value of the
action mapping's input attribute. If there are no errors, Struts proceeds to invoke the
execute method of the action class
com.softslate.commerce.customer.order.CartAddAction . We'll assume a
successful result without errors.

5. The execute method of
com.softslate.commerce.customer.order.CartAddAction is invoked to
process the request. In this case, CartAddAction starts by creating an instance of
com.softslate.commerce.businessobjects.order.CartProcessor ,
invoking its processAddItems method:

// Process the items
CartProcessor cartProcessor = (CartProcessor) baseForm
 .getBusinessObjectFactory().createObject(
 "cartProcessorImplementer");
Map results = cartProcessor.processAddItems(PropertyUtils
 .describe(baseForm));

32

At this point, control of the request is passed from the Web Controller or Struts layer, to the
Business layer.

6. Now in the Business layer, the processAddItems method of
com.softslate.commerce.businessobjects.order.BasicCartProcessor
is invoked. This method handles the business logic involved with the request to add an item to
the cart. Namely, it instantiates the user's cart if it doesn't already exist. A user's cart is
represented as an instance of
com.softslate.commerce.businessobjects.order.Order . It then parses the
incoming parameters and creates an instance of
com.softslate.commerce.businessobjects.order.OrderItem to represent
the order item.

After performing some validations against the database, processing inventory, and processing
discounts, it finally hands things off to the Data Access layer to record the results of the request
in the database:

OrderGatewayDAO orderGatewayDAO = (OrderGatewayDAO) getDaoFactory()
 .createDAO("orderGatewayDAOImplementer");
orderGatewayDAO
 .processOrderItems(getUser(), newOrderItems, results);

7. Now in the Data Access layer, the processOrderItems method of
com.softslate.commerce.doas.order.OrderGatewayDAOHibernate is
invoked. This method synchronizes the state of the user's cart with the database. Namely, it will
insert or update records into the sscOrder and related tables, storing the new order item in the
sscOrderItem table.

The DAO will use Hibernate mappings to synchronize the application's objects with the
database. In this case, the Hibernate mapping file WEB-
INF/classes/com/softslate/commerce/businessobjects/order/Order.h
bm.xml and other mappings files next to it are used to synchronize the application's objects
with the database tables.

Some DAOs will use HQL (Hibernate Query Language) mappings to communicate with the
database. In cases where data is being retrieved from the database, the DAO will employ the
HQL queries in the queries.hbm.xml files in the WEB-INF/classes/resources
subdirectories to query the database through Hibernate.

8. Assuming a successful result, control passes back to
com.softslate.commerce.customer.order.CartAddAction . Assuming
everything goes well, control will pass back to the Web Controller or Struts layer. In this case,
CartAddAction will perform some additional processing of the request. In particular,
depending on the application's inventory settings, the results of the processing by the Business
layer might indicate that one or more messages be displayed to the user concerning inventory
levels, or that one or more "low stock emails" be sent to the store's administrator.

When it is finished processing these possibilities, the execute method of CartAddAction
forwards the request to a Struts action forward:

33

return mapping.findForward(forward);

9. The Web Controller or Struts layer looks up the action forward returned by the action class. The
Struts action forwards are defined back in the Struts action mapping for the request. In this case
the following two action forwards can be returned:

<forward name="failure" path="/Product.do"/>
<forward name="success" path="cart.full"/>

If it's a failure, control of the request is passed to the "/Product.do" URL. In other words, the
user is sent back to the product page where any errors that occured are displayed.

If on the other hand everything went well and the processing succeeded, control is passed to
"cart.full", which is not a URL but rather a Tiles definition. Forwards that use this sort of dot
notation identify Tiles definitions.

It's at this point that control passes to the Presentation layer.

10. The Presentation layer looks up the Tiles definition corresponding to the action forward. In this
case, it finds the "cart.full" Tiles definition in the WEB-INF/conf/order/tiles-defs-
order.xml configuration file:

<definition name="cart.full" extends="core.baseLeftLayout">
 <put name="pageTitleKey" value="page.cart"/>
 <put name="subMenu" value="product.breadcrumbs" />
 <put name="body" value="cart.fullLayout" />
</definition>

Tiles definitions can both extend other definitions, and include other definitions under them. As
you can see, "cart.full" extends the "core.baseLeftLayout" definition, which is defined in the
WEB-INF/conf/core/tiles-defs.xml file:

<definition name="core.baseLeftLayout"
 path="/WEB-INF/layouts/default/core/leftLayout.jsp"
 controllerUrl="/LayoutAction.do">
 <put name="beforeHTML"
 value="/WEB-INF/layouts/default/core/empty.jsp" />
 <put name="htmlHead"
 value="/WEB-INF/layouts/default/core/htmlHead.jsp" />
 <put name="tracking"
 value="/WEB-INF/layouts/default/core/tracking.jsp" />
 <put name="header"
 value="/WEB-INF/layouts/default/core/header.jsp" />
 <put name="error"
 value="/WEB-INF/layouts/default/core/error.jsp" />
 <put name="message"
 value="/WEB-INF/layouts/default/core/message.jsp" />

34

 <put name="leftSide"
 value="core.leftSide" />
 <put name="rightSide"
 value="core.rightSide" />
 <put name="subMenu"
 value="/WEB-INF/layouts/default/core/empty.jsp" />
 <put name="body"
 value="/WEB-INF/layouts/default/core/empty.jsp" />
 <put name="footer"
 value="/WEB-INF/layouts/default/core/footer.jsp" />
 <put name="afterHTML"
 value="/WEB-INF/layouts/default/core/empty.jsp" />
</definition>

Here you can start to understand how Tiles organizes the JSP templates used to display the
results of every request. The "cart.full" definition extends "core.baseLeftLayout", which
identifies many of the JSP templates used to display the application's HTML. Note that
"core.baseLeftLayout" indicates that a JSP file named empty.jsp should be use for the
"body" of the page. Fortunately, "cart.full" overrides this attribute - otherwise, only an empty
space would be displayed in the page's body.

"cart.full" identifies another Tiles definition should be used for the body of the page:
"cart.fullLayout". This definition appears just below "cart.full" in the same WEB-
INF/conf/order/tiles-defs-order.xml file:

<definition name="cart.fullLayout"
 path="/WEB-INF/layouts/default/order/cart.jsp">
 <put name="couponFormGuts"
 value="/WEB-INF/layouts/default/order/couponFormGuts.jsp" />
</definition>

With this definition we've now seen nearly all of the JSP templates used to generate the
response. In particular, we can guess that cart.jsp is going to provide the guts of the screen
for us.

11. The Presentation layer forwards the request to JSP template correponding to the path
attribute of the Tiles definition. In this case, because "cart.full" extends "core.baseLeftLayout",
the request is forwarded to /WEB-INF/layouts/default/core/leftLayout.jsp .

12. The JSP templates are processed, including processing of the Tiles tags.

A peek at leftLayout.jsp will give you a good idea of how the various attributes of each
Tiles definition are used. For example, this line is the point at which the value of the "body"
attribute (in our case, cart.jsp) is included:

<tiles:insert attribute="body"/>

All of leftLayout.jsp is processed in this way, including each of the JSP templates

35

referred to by their Tiles attributes. The result is an HTML page displaying the contents of the
user's cart, including the new item that has just been added to it.

Note
SoftSlate Commerce extends the Tiles framework to first look inside the
custom directory each time a given template is called for, before using the
template found in the default directory. This is how a definition that
calls for /WEB-INF/layouts/default/core/welcome.jsp will
include /WEB-INF/layouts/custom/core/welcome.jsp
instead, if it exists.

36

7. Overview of How to Make Customizations
Following is a list of the major areas of SoftSlate Commerce and how to customize each area.
Following these rules ensures your changes to the application's core files are kept to a minimum,
making future upgrades easier.

1. Custom Java Classes.

Override existing Java classes by subclassing the appropriate class from the
com.softslate.commerce package with your own new class. Then, change the
implementer used by the system in the /WEB-INF/classes/appComponents-
custom.properties file to tell the application to use your new class instead of the default
one. (Requires application reload.) Do not modify any of the existing classes as they may
change with an upgrade.

2. Custom HQL and SQL Queries.

Override existing Hibernate queries (HQL) or create new ones in the appropriate queries-
custom.hbm.xml file found under the subdirectories of the /WEB-
INF/classes/resources directory. (Requires application reload.) Queries defined in the
queries-custom.hbm.xml files will override the queries defined in the regular
queries.hbm.xml files. Do not modify any of the queries.hbm.xml files as they may
change with an upgrade.

3. Custom Struts Configurations.

Override existing Struts action mappings and form bean definitions, or create new ones, in
/WEB-INF/conf/core/struts-config-custom.xml . (Requires application reload.)
Since this is the last file read into memory, it will override the mappings and form beans defined
in the other Struts XML files. Do not modify any of the other Struts XML files as they may
change with an upgrade.

4. Custom Tiles Definitions.

Override existing Tiles definitions or create new ones in /WEB-INF/conf/core/tiles-
defs-custom.xml . (Requires application reload.) Since this is the last file read into
memory, it will override the definitions defined in the other Tiles XML files. Do not modify any
of the other Tiles definition XML files as they may change with an upgrade.

5. Custom JSP Templates.

Override existing JSP templates by copying them from the /WEB-
INF/layouts/default-html5 directory over to the /WEB-INF/layouts/custom
directory and modifying them there. Create any new JSP templates in the custom directory as
well. Do not modify the templates in the default-html5 directory as they may change with
an upgrade. (In a similar way, to customize templates used in the Administrator, copy templates
from /WEB-INF/templates/administrator/default to /WEB-
INF/templates/administrator/custom .)

6. Custom Application Messages.

Override existing application messages or create new ones in the appropriate application-
custom.properties file found under the subdirectories of the /WEB-

37

INF/classes/resources directory. (Requires application reload.) Do not modify any of
the other application*.properties files as they may change with an upgrade.

7. Custom CSS Styles.

Override existing CSS styles or create new ones in /css//custom/custom.css. Do not
modify any of the other files in /css as they may change with an upgrade.

38

8. Extending SoftSlate Commerce's Business Objects
One of the most common needs in terms of customizing SoftSlate Commerce is to extend the
application's business objects to include additional data beyond what's supported by default. For
example, in the case of a bookstore, you may need to store additional fields like subtitle, author, and
publisher with your products. In other cases, for customers, you may need to track how they first found
out about your store or other idiosyncratic fields.

Fortunately, SoftSlate Commerce provides three ways to extend its built-in objects. As you will see,
each of the methods has its advantages and disadvantages. We hope that the first two methods are fairly
self-explanatory: they require minimal or no custom programming to use. For the last method, we'll go
through a detailed example.

Using Built-In 'Extra' Fields
A number of the database tables feature 'Extra' fields named extra1, extra2, extra3, etc. These
fields are intended to store any custom, generic data not supported by the built-in fields. To use the
various 'Extra' fields, simply populate them in the database, or by using the Administrator as you add
and edit your objects.

Supported Objects.

• sscCategory
• sscCustomer
• sscCustomerAddress
• sscDiscount
• sscOrder
• sscOrderDelivery
• sscOrderDiscount
• sscOrderItem
• sscProduct
• sscSKU

Advantages.

• The 'Extra' fields are placeholders meant to be used for any custom, generic data, so no database
schema changes are necessary.

• The 'Extra' fields get copied from product tables into the correponding fields of the order tables
(e.g. sscProduct.extra1 -> sscOrderItem.extra1) with each order, so they can be
used during order processing in addition to being displayed in the product catalog.

• The 'Extra' fields can be manipulated in the Administrator alongside the other fields.

Disadvantages.

• It may not be clear within programming code or in the Administrator what each of the different
'Extra' fields represents.

• The data types of the 'Extra' fields are each VARCHAR(255), so there is no flexibility in terms
of the fields' data types.

• There are a limited number of 'Extra' fields in each table that supports them, so you may run
out.

39

Storing Custom Data in Settings Tables
The two objects that most commonly need to be extended are categories and products. For these
objects, you have the option to define custom settings, which are stored for each product and category
respectively in the sscProductSetting and sscCategorySetting tables.

Supported Objects.

• sscCategorySetting
• sscProductSetting

Advantages.

• Good for storing information that only needs to be used during the display of the product
catalog. Product settings are loaded lazily on the product page, so no database programming is
required to use them.

• The Administrator has an interface to create and modify any number of product settings for each
product. (Navigate to Product Catalog -> Products -> Details -> More ->
Custom Settings)

• A similar interface, at Product Catalog -> Categories -> Details ->
Custom Settings, is available for categories.

Disadvantages.

• Product settings are not copied into the order item objects as an order is placed, so they cannot
easily be used during order processing.

• Even if multiple products or categories have the same set of settings, you must create them
individually under each individual object.

To populate sscProductSetting and sscCategorySetting with custom data related to
products and categories, the easiest way may be to use the Administrator's interface. For products, this
interface is found by navigating to Product Catalog -> Products -> Details ->
More -> Custom Settings.

Product Settings Form.

On this screen, you find the following text input fields:

• Code: A unique string identifying this setting with the product. On the product page, use the
code to display the value of the setting. For example, if you create a setting with a code of

40

Custom you can display it by placing this tag in a custom product.jsp template: <c:out
value="${productSettings.Custom.value}"/>

• Name: Used only in the Administrator, to explain to admin users what the setting is used for.
• Description: Also used only in the Administrator, to explain further to admin users what the

setting represents.
• Type: Determines the data type of the setting. (Determines which field in
sscProductSetting is used to store the value.)

• Value: The value of the setting for this product.

Adding Fields to the Database Tables
The method is both the most flexible and powerful, and also the one that takes the most work.

Supported Objects.

• All Objects

Advantages.

• Data can be stored as it ideally should - in the database table, with the correct data type. Queries
can be designed to leverage the additional fields.

• If you add fields to one of the product tables, adding the same fields to the corresponding order
table will allow the data to be copied over automatically with each order, and it can therefore be
used during order processing logic. (E.g. sscProduct.newField ->
sscOrderItem.newField.)

Disadvantages.

• Requires creating a number of customizations to support the additional fields, including a
custom Java bean, a custom Hibernate mapping, and custom Administrator screens. (Much of
the code is designed to support additional fields generically, however.)

• The table can get large if a large number of additional fields are required, possibly affecting
performance or maintainability.

Let's go through an example of adding a field to a database table. In this example, we'll imagine we are
running a bookstore, and that we've decided to add a field to sscProduct to store each book's author.

Extending the Product Object by Adding a Field to sscProduct

1. Create a new class that extends the built in
com.softslate.commerce.businessobjects.product.ProductBean class. To
keep things clean, we strongly recommend you place all your custom classes in a separate Java
package. We'll call our class CustomProduct and we'll put it in a new package named
com.softslate.commerce.demo . Here's the source code for our new class:

package com.softslate.commerce.demo;

import com.softslate.commerce.businessobjects.product.ProductBean;

public class CustomProduct extends ProductBean {

41

 private static final long serialVersionUID = 6874908321131548936L;

 String author = null;

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

}

Note that we are extending the built-in
com.softslate.commerce.businessobjects.product.ProductBean class.
Strictly speaking, you don't have to extend the built-in class, but you must implement the
com.softslate.commerce.businessobjects.product.Product interface.

2. Create the Hibernate mapping file for the new class. The Hibernate mapping file tells Hibernate
how to map a class' properties to the columns of the database table it corresponds to. Name the
file CustomProduct.hbm.xml, and place it next to the new CustomProduct.class
class. Put the following into the contents of the file (note the "extends" attribute):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <subclass
 name="com.softslate.commerce.demo.CustomProduct"

extends="com.softslate.commerce.businessobjects.product.ProductBean">
 <property name="author" length="255"/>
 </subclass>
</hibernate-mapping>

If you are adding more than one property to your extended class, include all of them inside the
<subclass> tag.

As of version 3.0 there is no need to add a lazy="false" attribute to the Hibernate mapping
(all the built in classes have the attribute set as false by default).

3. Now add the new column to the product database table:

ALTER TABLE sscProduct ADD author VARCHAR(255);

42

4. Update the product database table's class field to use the new custom class. This tells
Hibernate to instantiate instances of the new class when loading data from the database:

UPDATE sscProduct SET class = 'com.softslate.commerce.demo.CustomProduct';

5. In the /WEB-INF/src/appComponents-custom.properties file, add a new
property for the customization. In it set the value of the productImplementer property with the
fully-qualified classname of our new custom class.

productImplementer = com.softslate.commerce.demo.CustomProduct

This tells the application to load the CustomProduct.hbm.xml file as part of the Hibernate
initialization process.

6. To display our new author field, first put some data into the new column of the database:

UPDATE sscProduct SET author = 'Truman Capote' WHERE productID = 1;

7. Then, create a custom version of the product.jsp JSP template in the /WEB-
INF/layouts/custom/product directory. Paste some JSP code into the custom template
that displays the value of the new field if it is defined:

<c:if test="${!empty product.author}">
 <tr>
 <td class="productLabel" valign="top" nowrap="nowrap">
 Author:
 </td>
 <td class="productData" valign="top">
 <bean:write name="product" property="author"/>
 </td>
 </tr>
</c:if>

8. Finally, restart your application server or reload the application for your changes to take effect.

After extending the product object to add new properties, you may need to make them accessible in the
Administrator so they can be viewed and edited there. The following example takes us through the
steps required to add a new field to the Administrator interface.

Adding a New Product Field to the Administrator Screens

1. Create a new class that extends the built in
com.softslate.commerce.administrator.product.ProductForm class. This
will handle the processing and display of the the control screen in the administrator. We'll call
our class CustomProductForm and we'll put it in a package named

43

com.softslate.commerce.demo . Here's the source code for our new
CustomProductForm class:

package com.softslate.commerce.demo;

import java.util.Arrays;

import javax.servlet.http.HttpServletRequest;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;
import org.apache.struts.action.ActionMessages;

import com.softslate.commerce.administrator.product.ProductForm;

/**
 * Adding author field
 *
 * @author David Tobey
 */
public class CustomProductForm extends ProductForm {

 private static final long serialVersionUID = 1571534730516598703L;

 static Log log = LogFactory.getLog(CustomProductForm.class);

 // Add the new field to the list of fields
 private String[] fields = { "productID", "code", "name", "keywords",
 "shortDescription", "description", "isActive",
"unitCost",
 "unitPrice", "altPrice", "weight", "header",
"footer", "isTaxed",
 "smallImage", "mediumImage", "largeImage", "extra1",
"extra2",
 "extra3", "extra4", "extra5", "primaryCategoryID",
 "manufacturerID", "productOrder", "author" };

 // Add a human readable label for it
 private String[] fieldLables = { "Product ID", "Code", "Name",
"Keywords",
 "Short Desc", "Description", "Active", "Cost",
"Price",
 "Alt Price", "Weight", "Header", "Footer", "Taxed",
"Small Image",
 "Medium Image", "Large Image", "Extra 1", "Extra 2",
"Extra 3",

44

 "Extra 4", "Extra 5", "Pri Category", "Manufacturer",
"Order",
 "Author" };

 // Should it be displayed on the control screen by default? Yes.
 private String[] displayFields = { "code", "name", "isActive",
"unitPrice",
 "productOrder", "author" };

 private String[] searchableFields = { "code", "name", "keywords",
 "shortDescription", "extra1", "extra2", "extra3",
"extra4",
 "extra5", "author" };

 // Need a property for the control screen's power mode - a String[]
 private String[] author = null;

 public String[] getAuthor() {
 return author;
 }

 public void setAuthor(String[] author) {
 this.author = author;
 }

 public String[] getDisplayFields() {
 return displayFields;
 }

 public void setDisplayFields(String[] displayFields) {
 this.displayFields = displayFields;
 }

 public String[] getFieldLables() {
 return fieldLables;
 }

 public void setFieldLables(String[] fieldLables) {
 this.fieldLables = fieldLables;
 }

 public String[] getFields() {
 return fields;
 }

 public void setFields(String[] fields) {
 this.fields = fields;
 }

45

 public String[] getSearchableFields() {
 return searchableFields;
 }

 public void setSearchableFields(String[] searchableFields) {
 this.searchableFields = searchableFields;
 }

 // Let's say we must have an author - so let's add it to the
validation
 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 if (log.isDebugEnabled())
 log.debug("Starting validation.");
 setProperties();
 // Run the original validations
 ActionErrors errors = super.validate(mapping, request);
 if (getProductID() != null) {
 for (int i = 0; i < getProductID().length; i++) {
 if
(Arrays.asList(getDisplayFields()).contains("code")) {
 if (getAuthor().length < i + 1 ||
getAuthor()[i] == null
 || getAuthor()
[i].equals("")) {

errors.add(ActionMessages.GLOBAL_MESSAGE,
 new
ActionMessage("errors.required", "Author"));
 }
 }
 }
 }
 return errors;
 }
}

2. Similarly, create a new class that extends the built in
com.softslate.commerce.administrator.product.ProductAddEditForm
class. This will handle the processing and display of the the product detail screen in the
administrator. We'll call our class CustomProductAddEditForm . Here's the source code
for this class:

package com.softslate.commerce.demo;

import javax.servlet.http.HttpServletRequest;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

46

import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;
import org.apache.struts.action.ActionMessages;

import com.softslate.commerce.administrator.product.ProductAddEditForm;

/**
 * Adding author property
 *
 * @author David Tobey
 *
 */
public class CustomProductAddEditForm extends ProductAddEditForm {

 private static final long serialVersionUID = 4589930821507654940L;

 static Log log = LogFactory.getLog(CustomProductAddEditForm.class);

 private String author = null;

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 if (log.isDebugEnabled())
 log.debug("Starting validation.");
 initializeProperties(mapping, request);
 super.validate(mapping, request);
 if (getCode() == null || getCode().equals("")) {
 getErrors().add(ActionMessages.GLOBAL_MESSAGE,
 new ActionMessage("errors.required",
"Author"));
 }
 return getErrors();
 }
}

3. Now let's tell Struts to use our new form classes instead of the defaults. Add the following
Action Form definitions to the <form-beans> section of /WEB-
INF/conf/administrator/core/struts-config-custom.xml:

 <!-- Adding an author field to the product admin screens -->

47

 <form-bean
 name="productAddEditForm"
 type="com.softslate.commerce.demo.CustomProductAddEditForm">
 </form-bean>
 <form-bean
 name="productForm"
 type="com.softslate.commerce.demo.CustomProductForm">
 </form-bean>

4. Next is to add the HTML form elements for the new field to our JSP templates. Let's start with
the product detail screen. The JSP template responsible for it is /WEB-
INF/templates/administrator/default/product/productFormGuts.jsp.
We want to create a custom version of that file, so create a new file of the same name in the
custom directory: /WEB-
INF/templates/administrator/custom/product/productFormGuts.jsp

In our custom version of productFormGuts.jsp, place the following content to display a
text box for the new author field. Note we'll include the original JSP file to avoid duplication:

<%@ include file="/WEB-INF/layouts/default/core/tagDefinitions.jsp" %>

<!-- Start custom productFormGuts.jsp -->
<tr>
 <td class="genericLabel">Author:</td>
 <td>
 <html:text maxlength="100" name="productAddEditForm"
property="author"/>
 </td>
</tr>
<tr>
 <td>

 </td>
 <td class="genericData">
 Enter the author of this book.

 </td>
</tr>

<jsp:include page="/WEB-
INF/templates/administrator/default/product/productFormGuts.jsp"/>

<!-- End custom productFormGuts.jsp -->

5. Next is the control screen for products. The JSP template responsible for displaying the product
fields on that screen is /WEB-

48

INF/templates/administrator/default/product/productFieldColumns.
jsp. We want to use the same file, but just add some new logic for the author field. So let's
place a copy of productFieldColumns.jsp in the custom directory: /WEB-
INF/templates/administrator/custom/product/productFieldColumns.j
sp

In our copy of productFieldColumns.jsp, add the following lines in the appropriate
spots in that file to display the new author field, both when "Power Edit" is on and when it is
off. (Some analysis of the JSP tags is necessary here!)

When Power Edit is on:

<logic:equal name="field" value="author">
 <input type="text" size="15" maxlength="100"
 name="<bean:write name="field"/>"
 value="<bean:write name="item"
 property="<%= field %>"/>"
 class="genericGridData"/>
</logic:equal>

When Power Edit is off:

<logic:equal name="field" value="partNumber">
 <bean:write name="item" property="<%= field %>"/>
</logic:equal>

6. Restart your application server or reload the application for your changes to take effect.

49

	1. Application Architecture
	2. The Web Controller or Struts Layer
	Overview
	Components of the Web Controller (Struts) Layer
	Detailed Example of Process Flow in the Web Controller (Struts) Layer:
	ActionForms
	ActionForm base superclasses
	Actions
	Tiles definitions
	Struts configurations

	Full Example: Customer-side Login Form and Processing
	Customizing the Web Controller (Struts) Layer
	Quiz for Web Controller (Struts) Layer

	3. The Business Layer
	Overview
	Creating Business Objects
	Beans and Processors
	Beans
	Processors
	Example of a Processor

	Customizing Business Objects
	Quiz for Business Object Layer

	4. The Data Access Layer
	Overview
	Creating Data Objects
	Example of a DAO
	Querying for Collections of Objects
	Named Queries (queries*.hbn.xml files)

	Customizing the Data Access Layer
	Quiz for Data Access Layer

	5. The Presentation Layer
	Overview
	How Struts Routes Requests to JSP Templates
	Customizing the Presentation Layer
	More Information on Customizing the Presentation Layer

	Quiz for Making CSS Customizations
	Quiz for Making JSP Customizations

	6. Full Example - Adding an Item to the Cart
	7. Overview of How to Make Customizations
	8. Extending SoftSlate Commerce's Business Objects
	Using Built-In 'Extra' Fields
	Storing Custom Data in Settings Tables
	Adding Fields to the Database Tables
	Extending the Product Object by Adding a Field to sscProduct
	Adding a New Product Field to the Administrator Screens

